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A REFINED NONLINEAR ANALYSIS OF
LA14INATED COMPOSITE PLATES AND SHELLS

J. N. Reddy
Department of Engineering Science and Mechanics

Virginia Polytechnic Institute and State University
Blacksburg, VA 24061

SUMMARY

This final technical report summarizes in a compact form the

results of a two-year research program on the development of refined

shear deformation theories of plates and shells, and their analytical

solutions. The detailed results are reported in various reports and

technical papers during the course of the project. A third-order,

nonlinear shear deformation shell theory and finite el eme nt model that

accounts for parabolic distribution of transverse shear stresses through

thickness and the von Karman nonlinear strains was developed during an

Investigation sponsoreA by NASA Langley Research Center during the first

year of this research. The theory is further refined and extended and

analytical solutions are developed during this research. The most

significant contributions of this research are:

1. The development of analytical solutions of the linear theory
for various boundary conditions. The space-time concept is
used to develop such solutions.

2. The development of moderate rotation theory of laminated
composite plates.

3. The development of finite element models for first-ply and
post-first-ply failure analysis.

Future research related to refined theories should consider the

effects of mnoderate and large rotations and the development of micro-

and macromechanical constitutive models for a better understanding of

the structural behavior and prediction of progressive damage and failure

in composite structures.
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1. INTRODUCTION

The advent of new composite materials and their increasing use in

various fields of advanced technology has generated a new interest in

the development and solution of consistent refined theories of

anisotropic composite plates and shells. This interest is due to the

fact that the classical plate theory, in terms of its basic assumptions

(i.e. the Kirchhoff hypothesis), comes in conflict with real behavior of

these new materials. For example, in contrast to the basic assumption

of infinite rigidity in transverse shear in the classical plate theory,

the new composite materials exhibit a finite rigidity in transverse

shear. This property requires the incorporation of transverse shear

deformation effects.

In addition to other shortcomings, the classical plate theory

involves a contradiction between the number of boundary conditions

physically required to be fulfilled on a free boundary and the number

available in theory, which Is to be consistent with the order of the

associated governing equations (see Stoker 111). The non-fulfillment of

boundary conditions on the bounding surfaces constitutes another feature

of the classical theory. In recent years attempts were made to refine

the classical theory by: (i) incorporating transverse shear effects,

(ii) removing the contradiction which concerns the number of boundary

conditions to be prescribed at each edge, and (III) fulfilling the

boundary conditions on the bounding surfaces and, in the case of

laminated composite plates and shells, of the continuity conditions at

the interfaces between the contiguous layers. In addition, the refined

transverse shear deformation theories can be used to model such

anisotropic plates and shells whose material exhibits high degree of



anisotropy, and are not restricted to the thinness requirement implied

by the classical laminate theory. Another feature of refined laminate

theories concerns the adequate incorporation of the dynamical effects

allowing the evaluation of the lowest and higher natural frequencies.

The shear deformation theories known in the literature can be

grouped into two classes: (1) stress-based theories, and (2)

displacement-based theories. The first stress-based transverse shear

deforuable plate theory isdue to Reissner f 2-41. The distribution

across the thickness of the transverse normal and shear stresses is

determined through integration over the thickness of the equilibrium

equations of the 3-0 elasticity theory. The associated field equations

and boundary conditions expressed in terms of 2-0 quantities can be

determined by using the variational principles of the 3-0 elasticity

theory, or by considering the moments of nth order of the basic

equations of 3-0 elasticity theory. Both methods allow the reduction of

the 3-0 problems to a 2-0 equivalent one.

The pioneering work of the displacement-based theories is due to

Basset [51. Based on Basset's representation of displacement field,

Hildebrand, Reissner and Thomas (61 developed a variationally consistent

first order theory for shells. The field equations were derived using

the principle of minimum total potential energy. This results in five

equilibrium equations expressed in terms of five displacement

quantities.

By using the displacement representation of Basset, Mindlin [71

extended Hencky's theory (81 of isotropic plates to the dynamic case.

Historical evidence (from the review of the literature) points out that

the basic idea of the displacement-based first-order shear deformation
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theory came from Basset [51, Hildebrand, Reissner and Thomas [61 and

Hencky (81. Mindlin should be credited with the extension of the theory

to the dynamic case. The shear deformation theory of Hencky-Mindlin is

referred as the first-order transverse shear deformation theory (see

Reddy [91).

Following these works, many extensions and applications of the two

classes of theories were reported in the literature (see e.g.

Ambartsumian [10-121, Boal and Reissner [131, Bolle [141, Cheng [15],

Golldenveizer [16-181, Green [19-211, Kromm [22,231, Levinson [241,

Librescu [25-301, Lo, Christensen and Wu [311, Medwadowski [32], Murthy

[331, Nelson and Lorch [341, Pagano [35,36], Reddy [37-401, Rehfield and

Valisetty [411, Reissner [42-471, Schmidt [481, Shirakawa [491, Volterra

[501, Whitney and colleqgues [51-541, Wilson and Boresi [551, Yang,

Norris and Stavsky [561).

Extension of the displacement-based theory to the moderately large

deflections case is due to Medwadowski [32] and the extension to

laminated plates is due to Whitney [511 and Whitney and Pagano [521.

Schmidt [481 presented an extension of Kromm's theory by accounting for

moderately large deflections (i.e., in the Von-Karman sense).

The second- and higher-order displacement-based shear deformation

theories have been investigated by Nelson and Lorch [341, Librescu [25-

281, lo, Christensen and Wu [311, Levinson [241, Murthy [33] and Reddy

[37-391. Levinson [241 and Murthy (331 presented a third-order theory

in which transverse normals are assumed to be inextensibile. The nine

displacement functions were reduced to five by requiring that the

transverse shear stresses vanish on the bounding planes of the plate.

However, both authors (and also Schmidt [481) used the equilibrium
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equations of the first-order ti.eory in their analysis and so they are

variationally inconsistent. As a consequence, the higher-order terms of

the displacement field are accounted for only in the calculation of the

strains but not in the governing differential equations or in the

boundary conditions. Recently, during the course of the present

research, Reddy [37-391 corrected these theories by deriving the

governing differential equations by means of the virtual work

principle. The theory presented in 1371 accounts for the von Karman

strains but is limited to orthotropic plates, while that in [381 deals

with the small-deflection theory of laminated plates.

Besides the works cited above, there exists numerous other works

pertaining to refined theories of elastic plates. Thus, in addition to

the works of Basset, Reissner, Hencky and Mindlin that have inspired the

elaboration of a great number of works, we mention the symbolic method

advanced by Lur'e [571 which has generated a series of works devoted to

the refined theory of the isotropic flat plates (see e.g., Westbrook

158,591). Starting from the three-dimensional field equations of

elasticity, methods based on the expansion of all the functions

characterizing the plane state of stress into power series over the

plate thickness (see Schipper [601), into Legendre's polynomials (see

Cicala [611), into biharmonic polynomials (see Teodorescu [621), or that

resulting by considering the nth order moments of the equations of

three-dimensional elasticity (see Tiffen [631, Tiffen and Lowe 1641) are

developed.

Another method which leads to the static and dynamic theory of

isotropic and anisotropic plates, is the method of asymptotic

integration of the three-dimensional equations of elasticity (see

4



Gol'denveizer (17,181, Reissner [421, and Green and Naghdi 1201). Other

methods are of mixed character which use first, the method of expanding

the functions (defining the stress and strain state) into Legendre's

polynomials, and then the asymptotic integration method (see, for

example, Poniatovskii (651).

The analysis of laminated composite plates for bending and natural

vibration has received widespread attention in recent years. 3-D

elasticity solutions for the bending (see Pagano [361), vibration and

buckling of simply supported thick orthotropic rectangular plates and

laminates were obtained by Srinivas and his co-workers [66-681. The

Navier solution of simply supported rectangular plates was developed by

Whitney and Leissa [52] for classical laminate theory, Pagano (351,

Whitney [511, Bert and Chen [691 and Reddy and Chao [39,701 for the

first-order transverse shear deformation theory, and by Reddy and his

co-workers [37-39,711 for a refined shear deformation theory.

Papers dealing with the response of plates excited by dynamic loads

of known time history have been less in number. Sun and Whitney [72,731

have analyzed the response of anisotropic plates in cylindrical bending

using Mindlin's [7] theory to account for normal shear stiffness. Sun

and Chattopadhyay 1741 used the plate equations developed by Whitney and

Pagano (531 to analyze a specially orthotropic plate subject to a center

impact. Dobyns 1751 presented an analysis of simply-supported

orthotropic plates subjected to static and dynamic loading conditions.

The vibration frequencies and mode shapes were then determined and

solutions for plate deflections, bending strains, and normal shear

forces due to several transient loads were obtained. Reddy [76,771

obtained the exact form of the spatial variation of the solution to
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forced motions of rectangular composite plates for two different

lamination schemes, under appropriate simply supported boundary

conditions. He reduced the problem to the solution of a system of

ordinary differential equations in time, which are then integrated

numerically using Newmark's direct integration method.

In geometrically nonlinear theories of elastic anisotropic plates

one often assumes that the strains and rotations about the normal to the

midplane are infinitesimal, and retains the products and squares of the

derivatives of the transverse deflection in the strain-displacement

equations (the von Karman assumption; see [[32,37,78-80]). The full

geometric nonlinearity (implied by the strain-displacement equations of

nonlinear elasticity) in shell theories was considered by Naghdi [811,

Librescu [291, Yokas and Matsunaga [821, Habip [83], and Pietraszkiewicz

[841, among others. Consideration of full geometric nonlinearity not

only results in complex equations, but not warranted in most practical

problems. On the other hand, the von Karman nonlinear theory does not

account for moderate rotation terms that could be of significance in the

analysis (especially in stability problems) of plates while accounting

for the transverse normal and shear strains. The small strain and

moderate rotation concept was used in the classical theory of plates and

shells by Sanders [851, Koiter [861, Reissner [871 and Pietraszkiewicz

[881, and in first-order plate and shell theories by Naghdi and

Vangsarnpigoon [891, and Librescu and Schmidt (901. In all these works,

no attempt was made to obtain solutions of the theory.

From the review of the literature on various plate and shell

theories, one can make the following observations:
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1. Analytical solutions of refined theories of anisotropic

composite laminates, other than those with simply supported

edges, are not available. For example, the Livy type solutions

are not developed for laminated composite plates. This might

be possibly due to the difficulty in solving the ordinary

differential equations resulting from the Levy procedure.

2. The most commonly used refined theory is the first-order shear

deformation theory, commonly referred to as the Mindlin plate

theory. It is well-known that the first-order theory (I)

requires the introduction of shear correction factors (to

correct for the constant state of transverse shear stresses

through thickness), (ii) disregards the effect of transverse

and normal stress, and (iii) does not satisfy the stress-free

boundary conditions on bounding surfaces. It is also known

that the determination of the shear correction factors for

anisotropic composite plates is not established, and their

values depend on the geometry and lamination scheme of the

laminate.

3. Use of refined theories with moderate and large rotations

(situations quite commonly encountered in the analysis of

helicopter blades, turbine blades, etc.) is not investigated,

especially for anisotropic composite laminates.

Ouring the present research analytical solutions based on the

space-time concept were obtained and the third shear deformation with

moderate rotation terms was developed. A first-ply and post-first-ply

analysis capability based on the first-order shear deformation theory

was also developed. A brief summary of the first two results is

presented in the next section.

7
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2. BRIEF OUTLINE OF RESEARCH FINDINGS

A Third-Order Theory

Consider a laminated plate composed of N orthotropic layers,

symmetrically located with respect to the mldplane of the laminate. The

governing equations of the refined theory are based on the following

displacement field 137-39):

u1 = u+ Z0 4 (A2 a
u1 x  I h (*x + T))

u2 : ly T h ()(y+T3Y,

u=w ()

where (U,U2,U3) are the displacements along the x, y and z coordinates

respectively, (u,v,w) are the corresponding displacements of a point on

the midplane of the laminate, and ox and *y are the rotations of a

transverse normal about the y- and x-axes, respectively.

The cubic variation of u, and u2 through laminate thickness

introduces higher-order resultants,

h

Pi ha 1zdz (1 =1,2,6)

h

2(RI'R2) = z z(o 5,a4)dz

and laminate stiffnesses,

h

(FijHij) = (4,6)d =i 1,2,6)

8



h

(D1 .'F1j) f h Q1j(z 'z4)dz (ij - 4,5)

For symmetrical cross-ply laminated plates, the following stiffness

coefficients vanish 139):

Bij - Ej - 0 for iJ - 1,2,4,5,6

A16 " A26 * D16 * 026 " F16 - F26 - H16 - H26 - 0

A45 ' D4 5 a F45 , 0

This implies that the effect of coupling between stretching and bending

vanishes. For such laminates the governing equations are given by (see

137,38)):
4 a3 ' 4 a3x 4w a30W a33

4 IF xn + Hl 3_4 x 4 W) +4 F + H 4 (_,2* [ 11  7,Hi( )xX i- + F 4 12 -i--y + 12(- )( L
3h aax ay 3h axay

+ z- 2+ F 12 + H 12(-,, 4 + 2 2) +Fax ay ayax 3h aywax axay ay

4 a30 4a3 3 33, 3*
44+ H )--( + ") + 2F ) (-- + x)+ 2H( A-'

ay axay ayax 3h ayax

*"2)3 4 w + *x 4 ati 2

33a * 23 $ 2
+ D 5(- !! - " , + F44( 'Y + ay' )]+ (A ( -' x + a )

4--aT ai + q4 0 (2a)
2 2* 2 23# 4 a2

55 2x 4 F + 4(acax a xa ax xa

9 W"id



2 2 2 2~3y ,y 3- *y a*ay 23

"-- A5( ' 0'.7 *- " - (V-" '",,4 a2x

4 w 4 4w 4

' s'; , ) + 55(- 7)(*X i-X)1 - -- b
a2 ox *2 i4 h2i 'jt l(, ';T x

442 2 0~ 4 (2 +av

+l'- - x 2 16 + 3w , a2 - ) 4 )j +la

a a2* a204 * ,2 2a
+ - a-x-a+ + --.Tx) + .,6 - -_ 7, Rayy W by axay -)

+~~~~ 4 D +D)a (b

47 (La() + o) 55(- J -0 (2)

eraxy e te th trs s d e 2x +n 4.12 axat

ofth nra! toId n botteyax axs rspetvlyi h

d22r e 7 neo, nd A)(x . .22 r e h +ltay 3hnsey by

2 2+hy i*) +. D(-) .aw,4 1  3 a
- 44y +my VX 7O

3 2 2 01 2 2
*t a~. W + a22 +. )j jj 4 ID

4.S)4 22  a.4 AW-+ H _( - - - X~ + - -'V Iama y 3h by by h b

Here w denotes the transverse displacement, * and # y are the rotations

of the normal to .ldplane about the y and x axis, respectively, q is the

distributed transverse load, and Aij Dip. Fij Hij are the plate

stfffnesses, defined by

10



(O1 j.F1 J.N-') * h/2 Q(k)(z2 z4 .z6 )dz (,J * 1.2,6)
1j"Hij -h/? i

(A1j.O1 j.F ) - .h/2Q4(k) 4 (,j - 4.5) (3)-h/2 J

Q(k ) denote the reduced orthotropic moduli of the k-th lmin. Theii
boundary conditions of the refined theory are of the form: specify

w or Qn

-or P
on r (4)

On or Nn

Ons or Nns

where r is the boundary of the midplane a of the plate, and

a, M n2 + M n2 + ZN
n Ix 2y 6x Y

M '(M2 - N)nx + ,( 2 _ 2)

P a P n2 + P n2 + 2P n nn I x 2 y 6x Y

Pn " (P2 " Pl)nxn + P(n2- n2 )
ns 2y (5)

Q Q 4 apns aPnn lnx 2 y T 7 as an-

M " Nt - P (1 1 .,2,6)
3h2
4

0i Q, - Ri (1 1.2)

a n n Ln !- 1 a
an xax yay as x 3x

The stress resultants appearing In Eq. (5) can be expressed In terms of

the generalized displacements (w,o ,y ) as:
xy



3OX + 04 82W4x"l °l T !° y + Fl ZT)(- +  + -F( +
1  11 ax 12 433*x 2) 1 2w

= "z D + 0 !!Y (- +F 4 )(-'a + 1 w) F- 4)(!!X + 2*

x a y 4 ax 22 - yAT a1 ( XT 3Wy a4

"06 ( + , .Y) + F66(- 4 _. ,!)(+T 2 2W-)
6 a axUT)(7 + "x "x "

Q aA L) +1) 4 )( w)
02 " 44(,y + ay 44(- h''y 3Y '

Q a-ASS(..+ !'-)-+O05(- 4), + Lw)
Iax 4 x 4 w

1a*(_ 4 a*, +3w + 4 * 2w
6  . 4F

+ -~. )("x - ax ax+ H )(

1 ax 12a ax 1 2 ( ay

Q3hT( 3WT W

w 4 
4

.
2w

12A44 a .- ) -a 2)(* a"  +  )

UT a X, 3w 4T a
R x +3) +  H6(_ 4-- )(3# +  a) (+) 212
in ax 1aey a1dse df tl ax f d 2  for 5ym-

ax h a

R3 1!* + 3+* 4~ 1
2 44 ay 22 ( _y ) 1 + -)H -v- ~

x 3hf ay

P6  I- +~a~ +. F _LH(- ~ axa

1 5 3x 4 ax 6

Analytical Solutions

The Present study deals with the development of the Livy type solu-

tion of the refined shear deformation theory of Reddy (12,131 for sym-

metric rectangular laminates with two opposite edges simply supported and

the remaining edges subjected to a combination of free, simply supported

and clamped boundary conditions. The state-space concept is used to

12



solve the ordinary differential equations obtained after the application

of the Levy solution procedure.

The Livy method can be used to solve Eqs. (2) for rectangular plates

for which two opposite edges are simply supported. The other two edges

can each have arbitrary boundary conditions. Here we assume that the

edges parallel to the y-axis are simply supported, and the origin of the

coordinate system is taken as shown in Fig. 1. The simply supported

boundary conditions can be satisfied by trigonometric functions in x.

The resulting ordinary differential equations in y can be solved using

the state-space concept.

Following the Livy type procedure, we assume the following

representation of the displacements and loading:

"(,Y W M(y)sia
Mal

wax~y) - rW(sinox

Ox(X.y) - r 1xm(Y)COSOX
mfl

(7)

0 y (X,y) -i Vm(Y)snx

q(xy) - c Q (y)sinaxrn-i

where a - and W., X*, Ym and Q. denote amplitudes of w, 4x *y

and q, respectively. Substituting Eqs. (7) into Eqs. (2), we obtain

eIW;' + e 2W + e 3WM + e4 X + e5X. + e6Yin'' + Y + Q 0

e 8W + egW, + elOXm + ellxm + elmY - 0

e13% " +  e ' +el,% + e16 Y; + e 7 Ym a 0 (8)

Where primes on the variables indicate differentiation with respect to y,

13



and

eI~ ~ -(h-)2H22

2( 42 ) 2c12(H + 2H66 ) + A44 - 0 + ( 2
3h 1 1 2) -4( ) Uhs4 -F 44h h

e7 3 *Z 4 2-_ 4 (4 )2F 5)8 h+3 1 -T -hT A55

e e 4  - F12 12 - F +
8 F 3h)23h

a ,J3 45 (F11 ~7H 1 + l 4 2  A

3h . 3 _ (h)2 0] _ (h )2F55

6 a -3h 22  - - 7 H 22)

e 244 8H +2") D +4 2

el5 -112 2F 6 * H 12 ) 44 + F44  A44

e 8 e4 , e

e Fo 066 (F7 )2H 1.e2()

| " -D + 3h F _ ( 4 )2H' + h 055 (4 )2F55 4 A55

T' 113h

e16 0~ 0 8 F 2 + 4

e,17- m210 +. -! F66 - (-4)2N 4 . a~f D 4 ) 2F -A

6 3h 3, 66' 44 j 44444

14
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Equations (8) can be written as:

W ClWI + CZm +c 3Xm + c4Ym + CoQm

XWO -c5Wn + cIWm + c7Xm + c8Y

; c9%'' + C10  + c11X + c12Y, (10)

where 2 e e e e e

c + 4 612 6 7 e)/ e 6
e(e e1 16  e316  2 e 16

c (e5612+ eoe 36) + 16)

c2 (ela 4  e3)/e6e12  e6

10 16 e)/(e + 16
3 elo j~ e16e16

ee ee e 2  e6

4 ( + 4 12 +Aej 6 - e7)/(e
16 elO e1oe16  e 6

4Co 1 e16

e16 + e6

c5 a -e4/e10 , c6 a -e5/e10 , c7 - -e11/elO, c8 2 -e=2/el0

c 9  e6/e16, c10 n e7/e16, C1l 0 e12/e16, c12 * -e17/e16  (11)

The linear system of ordinary differential equations (10) with

constant coefficients can be reduced to a single matrix differential

equation using the state-space concept (see [911)

- Ax + b (12)

This can be done by introducing the variables

xl - Wm, x2  W, x3 -W;' x4  W''

x5 a X , % x7  Y M. X8 "; (13)

where

15



X1 0

0

0

~CoQ.
0

0

0

0

and

01 0 0 00 0 0

00 1 0 0 0 0 0

0 0 0 1 0 0 0 0

A C2  0 c1  0 C3  0 0 C4  (14)

0 0 0 0 0 1 0 0

C6  0 C5  0 C7  0 0 C8

0 0 0 0 00 0 1

0 C10  0 C9  0 C11  C12  0_

The solution of Eq. (12) is given by

x a eAyK + eAy f e-AYbdy (15)

where K is a constant vector to be determined from the boundary

conditions, eAy denotes the product,

-exly

eAy -[ci L..e icl -!  (16)

0

16



(c] is the matrix of distinct eigenvectors, Xt(i = 1,2,3,...8) are the

elgenvalues associated with matrix A, and [c1- 1 is the inverse of the

etgenvectors matrix [c].

The following boundary conditions are used on the remaining two

edges (i.e., the edges parallel to the x-axis) at y = b

simply supported: w = 0x = P2 = M2 = 0

clamped: w = =lx =iy = 0By X

free: P2 = M2 = 0

M6 - P = 0
6 3h 2  6
4 4 (P6 +P2

2 0 (17)

Numerical results are presented for orthotropic and symmetric cross-

ply (0°/90°/0°) plates subjected to three types of loads: uniformly

distributed load (q0 ), triangular distributed load (2q0 ) and concentrated

load P as shown in Fig. 2. The following sets of material properties are

used in the calculations:

Material I:

E= 20.83 x 106 psi , E2 = 10.94 x 106 psi

G12= 6.10 x 106 psi , G13 = 3.7 x 106 psi (18)

G23 = 6.19 x 106 psi , v12 = 0.44

17
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Material II:

E = 19.2 x 106 psi , E2  1.56 x 106 psi

G12 - G13 = 0.82 x 106 psi , G23 0.523 x 106 psi (19)

V12 - 0.24

The following notation has been used throughout the figures:

SS - simply supported at y - -b/2 and at y - b/2.

CC - clamped at y = -b/2 and at y = b/2.

FF - free at y = -b/2 and at y - b/2.

SC - simply supported at y = -b/2 and clamped at y = b/2.

SF - simply supported at y = -b/2 and free at y = b/2.

CF - clamped at y = -b/2 and free at y = b/2.

UN - uniformly distributed load.

TR - triangular distributed load.

PL - point load at the center of the plate (20)

To show the effect of transverse shear strains on the deflections

plots of nondimensionalized center deflection, w = 10w(a/2,O) E2 /(q ),

versus side to thickness ratio of various plates are presented in Figs.

3-5. The shear deformation effect is more significant in cross-ply

plates than in orthotropic plates. Also, the first order shear

deformation theory (FSOT) over predicts deflections relative to the

higher order theory (HSOT).

Figures 6 and 7 contain plots of the transverse stresses 13

through laminate thickness for various boundary conditions. The

stresses were computed using lamina constitutive relations. The

transverse shear stresses are constant and parabolic, through thickness

of each lamina, respectively, for the first- and higher-order

theories. The discontinuity at interface of lamina is due to the

18
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Figure 1. Geometry and coordinate system
of rectangular plate
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2

Figure 2. Various types of transverse loads
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Figure 4. Nondimensionalized center deflection versus side-to-
thickness ratio of SSFC plates (Material 2, a/b =4).

21



8

00 , FSDT
6 (00/90 0/0 0)9 FSDT

4 00, HSDT

(00/900/00),. HSDT

015 10 15 20

a/h

Figure 5. Nondinensionalized center deflection versus side-to-
thickness ratio of SSCC plates (Material 2, a/b =4).
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mismatch of the material properties. When the stresses (a ,o yg xy)

obtained from the constitutive equations are substituted into the

equilibrium equations of elasticity and integrated to determine the

transverse shear stresses, the resulting functions will be continuous

through the thickness.

Plots of the nondimensionalized center stress, 1 0 11( P

0, h)h2/(qoa 2 ), versus side to thickness ratio for simply supported and

free-free (SSFF) plates are shown in Figs. 8 and 9. The shear

deformation effect is quite significant for a/h ratios smaller than 10.

A Moderate-Rotation Theory

The theory is a generalization of the classical plate theory, the

first-order shear deformation plate theory, and the third-order shear

deformation theories of Reddy [37-391. The theory is based on an

assumed displacement field and orders of magnitudes of linear strains

and rotations. The associated strain-displacement equations are

presented and the equations of motion are derived using the principle of

virtual work. Specialization of the equations of motion for various

existing theories is presented.

Points of a three dimensional continuum V are denoted by their

orthogonal curvilinear coordinates I = (xl,x 2 ,x3). Covariant and

contravariant base vectors at points of the continuum are denoted

by Vi and , respectively. Latin indices are assumed to have values 1,

2, 3, and the Greek indices have values 1, 2. The laminated plate

continuum in the undeformed configuration is defined by the Cartesian

product of points in the midplane a and the normal [- h/2, h/21:

h h

V a x [- f , FJ
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where h denotes the constant thickness of the lainate. Let x4 denote

the curvilinear Inpiane coordinates and x3 be the normal to a. The

metric tensor components of a are denoted by

gas~~g M g. 9 9a 3 3  9 3 3 u

3r a
a U 9 6 ma 93 g n (21)

axa

the Kronecker delta, and nt is the unit normal to the boundary of a.

The displacement vector of a point in the plate at time t is of the

form

4U~ qa u' . 3 na.1a + u3n (22)

where the Elnestein summnation convention on repeated subscripts is

assumed. The covariant components of the Green-Lagrange strain tensor

are given by

C i. mu ( (23)
7i *. (U 11 + UJIi + UmliU )

where a vertical line denotes covariant differentiation. The strain

components tij can be expressed in terms of the linearized strains eij

and rotations w ij as

C .e + e em +1 'mij m * jw + 1 (24)

where

eU 3 7 1Ujj + uildi W iU (ui - ulli) (5

Following [901, we now assume that the strains tjand

rotations w~ are of the following magnitude:
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°(0(41 (02 ) O (e) o "< 1 (26)

Equation (26) Implies that the strains and the rotations about the

normal to the midplane are small, and that the rotations of a normal to

the nidplane are moderate. Such assumptions are justified in view of

the large inplane rigidity and transverse flexibility of composite

laminates.

Neglecting terms of order (e4 ) and higher in the strain

displacement equations (24), we obtain

1a 3 ( 3) 1+
as * 8  3aw *ew eC3 sw) w+

1 X 3 1Cl , elA + (e w 3 + e3 3 wa) + 'jx~w3

c33 e +C e + 1 X(27)

33 ew3 +  wxV3

where the underlined terms are of order ( )

The present theory is based on the following assumed variation of

the displacement components across the plate thickness:

,x ,X' t) - u0(xo,t) - x 0 + f(x )u (x~ ,t)

8 3 Os 0Bu3(x ,x ,t) - u (xt) + u3(xs,t) (28)

where f is a specified function of the thickness coordinate x3. Note

that the transverse deflection is assumed to be independent of x3 and

consists of two parts, one due to bending and the other due to

transverse shear. The particular form of displacement field is assumed

in order to include the displacement fields of the classical plate

theory (set u0 - 0 and ul -0), the first-order shear deformation theory3
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(set u3 , 0 a1 f(x3) a X31, and the third-order shear deformation theory

of edd [31 (et ~ 0 and f(x) -X31 - N- (.- 12, among others.

For the displacement field in Eq. (28), the strains for the

moderate rotation theory become (consistent with the assumptions in Eq.

(26)1.

ga o + 31CI+f

C 0~ + g +:0 
3  o + gX3 1  + f,13 + fj

A cG3 03 a AcaA

03 a~i + g 2  
(29)

where g a df/dx3, and

0o u (0 + u0 ) + 10 +u ,( 0 0 +
Cie al a 31 + 3~ ~~ 31  31

E (u 1  + u~a C 7 u~3  0 U 0

o 11 01 0 1 0 0 13 1o 1£3 A (um + u a 1 uO) K A 7 U 3 1heu3 1 x %3 'fu3x

C1 1 10 o 1 1 0 1 00A£3 *- 7f UXI .31  c. £ 0 7f UkaUx *33 7 U31  3 1a

*0o.. I 0 ; 111lu (30)633 a= 3SUG £33 f aUa

The dynamic version of the principle of virtual displacements is

used to derive variationally consistent equations of motion associated

with the displacement field in Eq. (28). The principle can be stated,

in the absence of body forces and prescribed tractions, as

T
0 u f (a iaC 1 )dV + f q6u dA p(6 o 166i)dV~dt (31)

o V

where a"denote the contravariant components of the symmetric stress

tensor, q - q(xca) is the distributed transverse force per unit area,
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and o is the density of the material of the plate. The superposed dot

denotes the time derivative, 6 au/at. We introduce the couples and

inertias,
h7

(N008, Ma8 , Pas) f 0a( 1 , x
3, f)dx 3

h

h

(Q*. Q0. RO, ROo So, SO) = 2 OA3(1 g. x3, x3g, f, fg)dx 3

h

h

(N3, 9N 3, 3) =f 2 33(I, g, g2 )dx3  (32)
h

h h h

I=f xdx 3 , 11 =f ox3 dx 3 , I= f~dx 3  3

h h h

32 h7 2 23
-f 7(~x , 7 1= X (3

The equations of motion of the theory are obtained by substituting Eq.

(30) for the strains in terms of the displacements (ua,u3,u3,u)

into Eq. (31), integrating by parts to transfer differentiation from the

displacements to the stress resultants and couples, collecting the

coefficients of the various virtual displacements, and invoking the

fundamental lemma of the calculus of variations. We obtain the

following six equations:
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o 0~
8 

0N
8 u fOi

6113: Maez + [N'3uIs + U31 ii -Q 0~cUIi

- (Rai u?,)I + (Rou )I -(S u) + (N'uo)
a__ 318__ 8 So Blo8 _____ a

- (N 3u 1)Ia = q + I (uo + u0) + I i+ u1 +I 0
___ 0 3 3 1iCcQ 2 Clio 2 3cu

0 uB OaI +QI=q+160 + 0
[N ( 31s + u3 18 )I a 0 q+1( 3 + 3 )

61. ps -6( +! 0 B0 -s
QU 13 - a( + u,) + R u3o + S Is

-(SS~ 0 I N ~3 uI + Jf-o j 0 + Ifiu1(4
U a 31a =1uo 2 310 12  (34

where the underlined terms are entirely due to the inclusion of moderate

rotations (i.e., over and above the von Karman nonlinear terms).

Equations (34) can be specialized to the three different theories

discussed earlier. The equations are summarized below:

(i) Classical Plate Theory ( = 0, ul = 0)

Nois- Ou~ldI8 = lo u o

1~I + (NcIBuo 18)I 0 Qu 1.)i8  (Rol u I)I B+ (Nu 1)

=q + I u 0 + I01 1 1u 310 (35)

(ii) First-Order Shear Deformation Plate Theory

(u 0=O0, f = x3
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(iii) Third-Order Shear Deformation Plate Theory

30 0 fx(~ 3 2

NCSI + BO 1) = I*.o + I uI
a 0 1 a

QatI + (N'08u ,)IC = q + I uO

P B GB( + +O .BI 1 -3 1= f* + If**' (31)

Note that several other theories can be obtained from Eq. (35) as

special cases. For example, the refined theory of Kroiiu (22,231, along

with that of Basset [51, can be obtained by setting 23 = 0.
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